DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection, Genome Biology

Por um escritor misterioso
Last updated 13 janeiro 2025
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we develop statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). For evaluation, we generate deep targeted NGS data of matching tumor and plasma DNA from 85 colorectal cancer patients. The DREAMS approach performs better than state-of-the-art methods for variant calling and cancer detection.
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
The challenge of somatic variant detection accuracy in liquid
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Genes, Free Full-Text
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
DREAMS: Deep Read-level Error Model for Sequencing data applied to
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Bioinformatic strategies for the analysis of genomic aberrations
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Discovery of clonal hematopoiesis driver genes a Summary of the
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
DREAMS: Deep Read-level Error Model for Sequencing data applied to
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
LFMD: detecting low-frequency mutations in high-depth genome
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Computational analysis of cancer genome sequencing data
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
DREAMS: deep read-level error model for sequencing data applied to
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Systematic evaluation of error rates and causes in short samples
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Detecting and Quantitating Low Fraction DNA Variants with Low
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Genes, Free Full-Text
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Systematic errors in HiSeq data. A screenshot from the IGV browser
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
PDF) DREAMS: Deep Read-level Error Model for Sequencing data

© 2014-2025 atsrb.gos.pk. All rights reserved.