Water, Free Full-Text

Por um escritor misterioso
Last updated 25 dezembro 2024
Water, Free Full-Text
Runoff from the high-cold mountains area (HCMA) is the most important water resource in the arid zone, and its accurate forecasting is key to the scientific management of water resources downstream of the basin. Constrained by the scarcity of meteorological and hydrological stations in the HCMA and the inconsistency of the observed time series, the simulation and reconstruction of mountain runoff have always been a focus of cold region hydrological research. Based on the runoff observations of the Yurungkash and Kalakash Rivers, the upstream tributaries of the Hotan River on the northern slope of the Kunlun Mountains at different time periods, and the meteorological and atmospheric circulation indices, we used feature analysis and machine learning methods to select the input elements, train, simulate, and select the preferences of the machine learning models of the runoffs of the two watersheds, and reconstruct the missing time series runoff of the Kalakash River. The results show the following. (1) Air temperature is the most important driver of runoff variability in mountainous areas upstream of the Hotan River, and had the strongest performance in terms of the Pearson correlation coefficient (ρXY) and random forest feature importance (FI) (ρXY = 0.63, FI = 0.723), followed by soil temperature (ρXY = 0.63, FI = 0.043), precipitation, hours of sunshine, wind speed, relative humidity, and atmospheric circulation were weakly correlated. A total of 12 elements were selected as the machine learning input data. (2) Comparing the results of the Yurungkash River runoff simulated by eight machine learning methods, we found that the gradient boosting and random forest methods performed best, followed by the AdaBoost and Bagging methods, with Nash–Sutcliffe efficiency coefficients (NSE) of 0.84, 0.82, 0.78, and 0.78, while the support vector regression (NSE = 0.68), ridge (NSE = 0.53), K-nearest neighbor (NSE = 0.56), and linear regression (NSE = 0.51) were simulated poorly. (3) The application of four machine learning methods, gradient boosting, random forest, AdaBoost, and bagging, to simulate the runoff of the Kalakash River for 1978–1998 was generally outstanding, with the NSE exceeding 0.75, and the results of reconstructing the runoff data for the missing period (1999–2019) could well reflect the characteristics of the intra-annual and inter-annual changes in runoff.
Water, Free Full-Text
Premium PSD Water text effect mockup with drops
Water, Free Full-Text
OriginClear Presents Acquisition Roadmap for Water On Demand
Water, Free Full-Text
Blue Water - Editable Text Effect, Font Style
Water, Free Full-Text
The Full Oasis Water Center
Water, Free Full-Text
Free 20oz water or soda* with a ride on the Bricktown Water Taxi!
Water, Free Full-Text
Red White and Blue 4th of July Water Bottle Decor with Stars
Water, Free Full-Text
Controlwave Designer Trial Download - Colaboratory
Water, Free Full-Text
Organic Decaf Buzz Free Full City Roast Ground Coffee, 24 oz at Whole Foods Market
Water, Free Full-Text
Characteristics of water free-surface with different momentum ratio at 45° confluence - ScienceDirect
Water, Free Full-Text
Water 3D Text Effect Editable PSD File Graphic by Imamul0 · Creative Fabrica
Water, Free Full-Text
Full Moon In Blue Water / Stanley & Iris 2 Films 2 Disc DVD Set RARE! Free Ship!

© 2014-2024 atsrb.gos.pk. All rights reserved.